Introduction to Airflow in Python

Table of Contents

AIIfIOW DAGScovvvveeueiiiiiiennaniissinissisniisssisssssmsss 2
Y G 1 g o TV LT
Define @ DAG in PYthON.....ciiiiiiiiiiiiiiiiiniiiiiiisnninncessasiissesnneessassssisssstssesssssssssssssssessssssssssssssssssssnes

DAGS 0N the COMMANA [INE.....eeieiiiiiiieirecriciri et ere s tee s taeetsserasessssasssesssasssnssssssasssasssnsssnnnan
RUN @ WOTKFIOW I ATIIOW oottt e e e e e e et e e e e e e e seababbeeeeeesesaaabereeeeeas

Command Line VS PYthONcccuuuiiiiiiiiiiiiiiiiiiniiiiiecieiiinniinnesssseisinniinssssssssssisssiisssssssssssssssssssssssnes
AIIfIOW WED Ulueaaeeeiiiiieeeeiciiiiinriiiiisiniisssniisssissssmmnisssns 4
[N s 1= 1] o T - P
DAG TrEE VIBW...ceeeireerieeiieeeireeeretteeeteeereeereeeteeerreeeereereeeeere e tettterteerteataeeseeesesesesseeesens
DAG Graph VIBW ...ccceuuuuiiiiiiiiiiiinniiiiiiiiiiieimmmssiiseiiiieessmsssiisetimeessmmssisstimsesssssssssstiisessssssssssssssssssssnss
Y 0 T LAY = S
0= o T - TN

CoMMANA LINE VS WED Ulcueeiieiiiiiiiiieiieiieiieeiieeiinetineetessansesserasessssssssosssasssassssssssssasssnsssnsesnssnsssnne

Basic Concepts:

e Data Engineering = taking any involving data and turning it into a ,
, and
e Workflow =
o Aset of steps to accomplish a given
= Such as: downloading files, copying data, filtering information, writing to
a database, etc.
o Of varying of
= Some workflows may only have 2 or 3 steps, while others consist of
hundreds of components
o Aterm with depending on context — Specific meaning within
specific tools
e Airflow is a platform to program workflows:
o Creation, scheduling, and monitoring workflows

o It can use various tools and languages, but the actual workflow code is written
with Python

o Implements workflows as DAGs (Directed Acyclic Graphs) — set of tasks and the
dependencies between them

o Accessed via code, command-line, or via web interface

Airflow is not the only tool for running data engineering workflows. Some other options are
Spotify’s Luigi, Microsoft’s SSIS, or even just Bash scripting within our Airflow usage

Airflow DAGs
Directed Acyclic Graph
e In Airflow, it represents the set of tasks that make up your workflow
e |t consists of the tasks and the dependencies between tasks
e Created with various details about the DAG, including the name, start date, owner,

email alerting options, etc.
Task_three
Task_two_1

DAG attributes

e Directed, there is an inherent flow representing dependencies or order between

execution of components.
o These dependencies (even the implicit ones) provide context to the tools on how
to order the running of components

e Acyclic, does not loop/cycle/repeat. This does not imply that the entire DAG cannot be
rerun, only that the individual components are executed once per run.

e Graph, represents the components and the relationships (dependencies) between
them

Define a DAG in Python

etl dag = DAG(
dag id = “etl pipeline”,
default_args = {“start_date” : “2020-01-08"}

** Note that within any python code, DAG is referred to via the variable identifier, etl_dag, but
within the Airflow shell command, you must use the dag_id.

from airflow.models import DAG
from datetime import datetime

default_args = {
“owner”: “jdoe”,
“email”: “jdoe@datacamp.com”,
“start_date”: datetime(2020,01,08)

etl dag = DAG(“etl workflow”, default args=default_arguments)

DAGs on the command line
e The airflow command line program contains many subcommands. Many are related to

DAGs
o for descriptions
o to show all recognized DAGs

Run a workflow in Airflow

| airflow run <dag_id> <task_id> <start_date> |

For example, using a DAG named example-etl, a task named download-file and a start date of
2020-01-10, our command will look like:

| airflow run example-etl download-file 2020-01-10 |

This task would simply download a specific file.

Remember you can use the airflow -h command to obtain further information about any
Airflow command.

Command Line vs Python
(When to use the Airflow command tool vs writing Python)

Use the command line tool to: Use Python to:

e Start Airflow processes e C(Create a DAG
e Manually run DAGs/Tasks e Edit the individual properties of a
e Review logging information DAG

Airflow Web Ul

2020-02-04 22:19:25 UTC

2o Airflow DAGs Data Profiling v Browse v Admin v Docs v About v

DAGs
Search:
1 2 3 4 5 6 7
Last
Run
(i} DAG Schedule Owner || Recent Tasks @ (i] DAG Runs © Links
@ M § example_dag e A airflow O HIBA= =00
@ | oM || update_state day, 0:00:00 | | BVl O®¥INA= 4=
—

Showing 1 to 2 of 2 entries

|

Hide Paused DAGs

1. DAGs - It provides a quick status of the number of DAGs/workflows available
Schedule - It shows us the schedule for the DAG (in date or cron format)
Owner - The owner of the DAG
- Which of the most recent tasks have run
Last Run - When the last run started
Last three —the last three DAG runs
Links — The links area on the right gives us quick access to many of the DAG specific

views

NouswnN

DAG detail page

2< Airflow DAGs Data Profiling v Browse v Admin v Docs v About v 2020-01-22 14:24:46 UTC

schedule: 1 day, 0:00:00
- example_dag | »

1
Graph View 1l Task Duration B Task Tries A Landing Times = Gantt iZ Details 4 Code

® Trigger DAG 2 Refresh ® Delete

Base date: Numberofruns: 25 § Go

() BashOperator [l success [li] running [l failed [T]skipped [up_for_reschedule [[] up_for_retry [l] queued []no_status
[}

Qlpag]

O generate_random_number

1. The DAG detail view gives us specific access to information about the DAG itself.
Including several views of information (Graph, Tree, and Code) illustrating the tasks and
dependencies in the code.

2. We also get access to the Task duration, task tries, timings, a Gantt chart view, and
specific details about the DAG.

3. We have the ability to trigger the DAG (to start), refresh our view, and delete the DAG if
we desire

DAG Tree View

O BashOperator [l success [l] running [l failed []skipped [I] up_for_reschedule [[Jup_for_retry [l queued []no_status

QIpAg)
(O generate_random_number

e The detail view defaults to the DAG Tree View. It shows the specific name tasks, which
operators are in use, and any dependencies between tasks.

e Thecircles in front of the words represent the state of the task/DAG. For example, in the
Tree view above, we have one task called generate_random_number.

DAG Graph View

Base date: 2020-01-22 14:34:23 Number of runs: 25 § Run: $ Layout: Left->Right § Go

BashOperator \running skipped | up_for_reschedule | up_for_retry no_status

generate_random_number

e The DAG Graph View arranges the tasks and dependencies in a chart format — this
provides another view into the flow of the DAG.

e You can see the operators in use and the state of the tasks at any point in time.

e From the image above, we can see a task called generate_random_number that is of
the type BashOperator

DAG Code View

example_dag
Toggle wrap

from airflow.models import DAG
from airflow.operators.bash_operator import BashOperator

dag = DAG(
dag_id = 'example_dag',

default_args={"start_date": "2019-10-01"}
)

partl = BashOperator(
task_id="generate_random_number',
bash_command="'echo $RANDOM',

dag=dag
)

e |t provides a copy of the Python code that makes up the DAG.

e The code view provides easy access to exactly what defines the DAG without clicking in
various portions of the Ul

e The code view is read-only
e Any DAG code changes must be done via the actual DAG script

Logs page

2« Airflow DAGs Data Profiling v Browse v Admin v Docs v About v 2020-02-04 22:00:32 UTC

SLA Misses

Task Instances

Logs
Jobs
List (4) Add Filter~ DAG Runs
Task Execution
Id Dttm Dag Id Id Event Date Owner Extra
4 02-04T22:00:04.465529+00:00 example_dag graph anonymous [(‘dag_id', 'example_dag'),
(‘execution_date', ")]

3 02-04T21:59:58.805269+00:00 example_dag tree anonymous [(‘dag_id', 'example_dag')]
2 02-04721:55:47.926018+00:00 cli_scheduler repl {"host_name":

"2adf449f2e33",
"full_command": "
['/usr/local/bin/airflow’,

e The Logs page, under the Browse menu option, provides troubleshooting and audit
ability while using Airflow.

e This view includes items such as starting the Airflow webserver, viewing the graph or
tree node, creating users, starting DAGs, etc.

Command Line vs Web Ul
(When to use the Airflow command tool vs WEB Ul) — Equally powerful depending on needs

Command line tool:

e |t may be easier to access depending e |tis easier to use
on the settings (via SSH, etc.)

