Chapter Il — Data Models and Query Languages

Table of Contents

Relational Model Versus Document Modelcuueeeeeeeeeeeeuuunesisiiiisiiisiinennnsiseneseeseesssssnees 2
The Birth of NOSQLcccuuueiiiiiiiiiiimmmmniiiiiiiiiiimmmmsiiieiiimesssmsssseadtaetinmsssssssiteessssssssssessssesssssssssssssssees 2
The Object-Relational Mismatchccciiiiiiiiiiiiiiiiiiiiisiiiiieeeesssesiieesssseeseee 3
Many-to-One and Many-to-Many Relationshipsteiiiiiiiriiiiiiiiiiniiieessees 4
Are document databases repeating history? ... 4

The NETWOIK MOEIviiiiieiiieciie ettt ssbeesbaeatheeeevaeesaeeessseesaseesnseesnndonnstinnseeenseeenseeessseessseesnsensnn 4
NN] 1o T T W 4 To Yo =Y USSR 5
Relational Versus Document Databases TOday........ccccceeeiiinennmeentinsionmmeennnnniiiiniiimeesminiiessssees 6
Which data model leads to simpler appliCation COAEToivuiiiiiiiiieeiiiiteseeesitee e eseeeseeesreesreesreesseesnseeeseas 6
Schema flexibility in the document MOEL............oouiiii ettt e 6
Data LOCAlity FOr QUETIESuiiiiieecdieiitieeites ettt e see ettt s e e s teesvessabaasneesabbe e seesnseeasseessseassseesssesdbnnannnanaies 6
Convergence of document and-relational databases...........coeeiiiiiiiiiiiiiiiiene Bt 7

Query Languages for DAtQ......ccccccceiieeeeirneneenniiiniinesnnsionssinmssnnesssssssssssosssssssstnsssssissssnssssssssssnns 7
Declarative Queries 0n the Webccciiiiueiiiiiiiiiiniiiiiiinciiiinenineeesaessssssssssessssssssssssssssssssnss 7
MaPREAUCE QUETYINE «ueuuieiiiiiiriunnniiiieemsneennssssiaionsensennsssssssssssssessssssssssssssssssssssssssssssssessssssssssssssssssssnss 7

Graph-Like Data MOdEeISecerriumusssiinnrennnniisnnssennsiissssisssssssssssssssssssssssssssssssssssssssnns 8
Property Graphisccccuiiiiieeiiieeiiutieiieeiiiieinanssiiesssnsennatsssssssestseesssssssssssssssesssssssssssssssssssssssssssssssssssnnss 8
Triple-Stores and SPARQLciteeeuueeeiieiiiiiiemmmmesioeenmmmesnssssnsieestiseessssssssssessssesssssssssssssssssssssssssssssssaes 9

TRE SEMATIC WD ..ttt st s ettt e e ae e s ebeesaneesaadbe et eeeteeesseeessseesseesaseesaseeanseesabesanseeensseansseens 10
The RDF (Resource Description Model) data MOdelo.ueiiiiiiiieiite et e saeesaee s 10
The SPARQL QUETY JANGUAEE ...cuveeueieieie et ettt ettt ste et e dtee it eea e satesatesatesaeesaeenbe e beeabe e beeabesabesaeesatesaeenne 10
Graph Databases compared to the Nnetwork Model.............oouiiiiiiiiiiiie e 10
The Foundation: Datalog........cciiiiiiuuiiiiiiiiiimmntiiiiiiiiieisimiimmiissssssiiesssssssnnn 11

are the most important part of developing software because dictate how the
and how we we are solving. It is very important to
choose the right because it has such a profound on what the software above
it can and can’t do.

Most applications are built by . For each layer, the
key question is: how is it represented in terms of the next-lower layer?

Real World (people, organizations,

Model it as >

Objects, Data Structures, and APIs to

Layer 4 . ;
goods, actions, sensors, etc.) manipulate them
Express them General purpose Data Models, such as
Layer 3 Data Structures >
y in terms of JSON or XML documents, tables, etc.
Represent
Layer 2 JSON/XML/relational/graph data them inderms
of
Represent Electrical currents, pulses of light,
themYn terms magnetic fields, etc.
of

The basic idea is: Each layer hides the complexity of the layers below it by providing aclean

data model. These abstractions allow groups of people to work together effectively.

Relational Model Versus Decument Maodel

The best-known data-model today is probably that of SQL, based on the relational model
proposed by.Edgar Codd in 1970: data is organizediinto relations (called tables in SQL), where
each relation is an unordered colléction of tuples (rows in SQL).

In the mid-1980s, relational database management systems (RDBMSes) and SQL became the
tools of choice for most people who needed to store and query data. Its dominance has lasted
around 25-30 years.

The roots of relational databases lie . The goal of the relational
model is to

In the 1970s and early 1980s, the network model and hierarchical model were the main

alternatives. In the late 1980s and early 1990s, object databases were “in”. In the early 2000s,
XML databases appeared. Relational Model always dominated them.

The Birth of NoSQL

In the 2010s, NoSQL is the latest attempt to overthrow the relational model’s dominance.

Fun Fact ‘ NoSQL does not refer to any particular technology.

NoSQL was originally intended simply as a catchy Twitter hashtag for a meetup
@ on open source, distributed, non-relational databases in 2009. Since then, many
interesting database systems are now associated with the #NoSQL, and it has
been retroactively reinterpreted as Not only SQL.

The driving forces behind the adoption of NoSQL databases are:
e Aneed for
e Preference for

° that are not well supported by the relational model
e Frustration with the of relational schemas
e Adesire fora and

It seems like relational databases will continue to be used alongside a broad variety of non-
relational datastores —an idea that is sometimes called polyglot persistence.

The Object-Relational Mismatch

Most application development today is done in object-oriented programming language, which
leads to a common criticism of the SOL data model: ifdata is stored in relational tables, an
awkward translation layer is required between the©bjects in the application code and the
database model of tables, rows, and columns. The disconnect between the models is
sometimes called an impedance mismatch.

In other words, the impedance mismatch is a term used when problems occur due to

between the database model and the programming language model. For example,
in our code, we have two classes: Person class and Address class, but we only have one table in
the database to store data for it.

Object Model Relational Model

Class Person

A 4

Person

Id: java.lang.Integer
homeAddress: class Address I Id [INTEGER PK]

i City [VARCHAR(255) Nullable]

Country [VARCHAR(255) Nullable]
Class Address

city: java.lang.String

country: java.lang.String | Object Model is more

granular than the
Relational Model

Object-relational mapping (ORM) frameworks like ActiveRecord and Hibernate the
amount of for this translation layer, but they can’t completely hide the
differences between two models.

Many-to-One and Many-to-Many Relationships

The advantages of having standardized lists versus having free-text fields are:
° and across values
° —if the value is stored in only oné place, it is easy to update across the
board if it ever needs to be changed
° — it is easy to translateinto other language

Whether you store an is-a question of duplication. When you use an ID, the
information that is meaningful to human is , and everything that refers
to it uses an ID (which only has meaning within the database). When you store the text directly,
you are the human-meaningful information in every record that uses it.

The advantage of using an ID is that because it has no meaning to humans, it
: the ID can remain the same, even if the infermation it identifies change.
is the key idea behind normalization in databases.

Are document.databasésirepeating history?

While many-to-many relationships and joins are routinely used in relational databases,
document databases and NoSQL reponed the debate on how best to represent such
relationships in a database. This debate is old and continue being a topic of interest.

The database for business data processing in the was IBMs Information
Management System (IMS). The design of IMS used a fairly simple data model called the
hierarchical model, which has some remarkable similarities to the JSON model used by
document databases.

Like document databases, IMS wofked well for one-to-many relationships, but it made

, and it did . Various solutions were proposed
to solve the limitations of the hierarchical model. The two most prominent were the relational
model (which became SQL and took over the world) and the network model (which initially had
a large following but eventually faded into obscurity).

The Network Model

The network model was standardized by a committee called the
and implemented by several different ;itis also
known as the CODASYL model.

The CODASYL model was a of the hierarchical model. In the tree structure of the
, every has exactly one parent; in the a could
have multiple models.

The link between records in the network model were not foreign keys, but more like

in a programming language (while still being stored on disk). The only way of

was to from a root record along thesechains of links. This was called an access
path. In the world of many-to-many relationships, several different paths can lead to the same
record.

A query in CODASYL was performed by moving a cursor through the database by iterating over
lists of records and following access paths. This was like navigating around an n-dimensional
data space. This “access path” made the code for querying and updating the database

and . With both, the network and the hierarchical model, if youdid not
have a path to the data you wanted, you were in a difficult situation.

The relational model

lay-out.all the :a relation (table) is simply a collection of
tuples (rows); and that’s it. No access paths, labyrinths to nested structures, no complicated
tracking.

In arelational database, the query optimizer automatically which part of the

in. which order, and which indexes to use. Those choices are effectively the “access
path”, but the big difference is that they are made automatically by the query optimizer, not by
the application developer.

Query optimizers are beasts, but the good news is that you only need to build a query optimizer
once, and then all the applications that‘use the database can

Comparison to document databases

reverted back to the hierarchical model in one aspect: nested
records (one-to-many relationships) rather than in a separate table.

To represent many-to-one or many-to-many relationships, relational and document databases
reference the related item by a called in the
and document reference in the document model. That identifier is resolved at read time

by using a join or follow-up queries. To date, document databases have not followed the path
of CODASYL.

Relational Versus Document Databases Today

Document Data Model Relational Model
1. Schema Flexibility 1. Better support for joins
2. Better performance due to locality 2. Better support for many-to-one and
3. Closer to the data structures used by many-to-many relationships

the application

Which data model leads to simpler application code?

It is not possible to say in general which data model leads to simpler application code; it
depends on the kinds of relationships that exist between the data items. For highly
interconnected data, the document'model is awkward, the relational model is acceptable,-and
graph models are the most natural.

Schema flexibility in the document model

Document databases are sometimes called schemaless, but , as the code that
reads the data usually assumes some kind of structure —i.e., there is an implicit schema, but it
is not enforced by the database. A more accurate term is schema-on-read (the structure of the
data is implicit, and only interpreted when the data is read), in contrast with schema-on-write
(the traditional approach of relational databases, where the schema is explicit, and the
database ensures all written data conforms to it).

Schema-on-read is similar to dynamic (runtime) type checking in programming language,
whereas schema-on-write is similar to static (compile-time) type checking.

The Schema-on-read is advantageous if the items in the collection don’t all have the same
structure for some reason (i.e., the data'is heterogenous). For example, there are many
different types of objects, or the structure of the data is determined by external systems. In
situations like these, a schema may-hurt more than it helps. When all the records are expected
to have the same structure, schemas are a useful mechanism for documenting and enforcing
that structure.

Data Locality for queries

A document is usually stored as a single continuous string, encoded as JSON, XML, or a binary
variant thereof (such as Mongo DB’s BSON). If your application often needs to access the entire
document (for example, to render it on a web page), there is a performance advantage to this
storage locality. If data is split across multiple tables, multiple index lookups are required to

retrieve it all, which may require more disks seeks and take more time. The locality advantage
only applies if you need large parts of the document at the same time.

Convergence of document and relational databases

Most relational database systems (other than MYSQL) have supported XML since the mid-
2000s. It seems that relational and document databases are becoming more similar over time,
and that is a good thing: the . If a database is able to
handle document-like data and also perform relational queries on it, applications can use the
combination of features that best fits their needs.

A hybrid of the relational and document models is a good route for databases to take in the
future.

Query Languages for Data

, Whereas gueried the database using
. An imperative language tells the computer to perform certain operations in a
certain order. In a declarative query language, like SQL, you just specify the pattern of the data
you want but not how to achieve that goal. It is up to the database system’s query optimizer to
decide which indexes, and which join methods to use, and in which order to execute various
parts of the query.

Declarative Queries on the Web

° query language:

It is more concise and easier to work with than an imperative API.

It details of the database engine

It has more run for automatic

It has a better chance of getting faster in parallel execution because they specify
only pattern of the results, not the algorithm that is used to determine the
results

0.0 O O

In a web browser, using declarative CSS styling is so much better than manipulating styles
imperatively in JavaScript. Similarly, in databases, declarative query languages like SQL turned
out to be much better than imperative query API’s (COBOL to iterate over records in the
database, one record at a time).

MapReduce Querying

MapReduce is a programming model for processing large amounts of data in bulk across many
machines, popularized by Google. MapReduce is neither a declarative query language nor a

fully imperative query API, but somewhere in between: the logic of the query is expressed with
snippets of code which are called repeatedly by the processing framework. It is based on the
map (also known as collect) and reduce (also known as fold or inject) functions that exist in
many functional programming languages.

Map and reduce must be pure functions, which means they only use the data that is passed to
them as input, they cannot perform additional database queries, and they must not have side
effects. These restrictions allow the database to run the functions anywhere, in any order, and
rerun them on failure.

A usability problem with mapReduce is that you have to write two carefully coordinated
JavaScript functions, which is harder than writing:a single query.

db.observations.mapReduce(

function map () {
var year = this.obs@rvationTimestamp.getFullYear();
var month = this4observationTimestampigetMenth() + 1;
emit (year + “#% + month, this.numAnimals);

}s

function reduce (key, walues) {
reduce Array.sum(values);

}
{
queny® {family: “Sharks®},
out: “monthlySharkReport™
)

Graph-Like Data Models

A graph consists of two kinds of objects: vertices (also known as node or entities) and edges
(also known as relationships or arcs).

Graphs are good for evolvability: as you add features to your application, a graph can easily be
extended to accommodate changes‘in your application’s data structures.

Property Graphs

In the property graph model, each vertex consists of:
e Aunique identifier
e Aset of outgoing edges
e Aset ofincoming edges
e A collection of properties (key-value pairs)

Each edge consists of:
e Aunique identifier
e The vertex at which the edge starts (the tail vertex)
e The vertex at which the edge ends (the head vertex)
e Alabel to describe the kind of relationship between the two vertices
e A collection of properties (key-value pairs)

Important aspects:

1. Any vertex can have an edge connecting it with any other vertex. There is no schema
that restricts which kinds of things can or cannot be associated.

2. Given any vertex, you can efficiently find both its incoming and its outgoing edges, and
thus traverse the graph —i.e., follow a path through a chain of vertices — both forward
and backward.

3. By using different labels for different kinds of relationships, you can store several
different kinds of information in‘a single graph, while still maintaining a clean data
model.

The cypher query language is.a declarative language for property graphs, created forthe Meo4;j
graph database.

If you put graph data in a relational structure, you can query it using SQL, but it has some
difficulties. In a relational database, you usually know in advance which joins you need in your

query. In a graph query, you may need to transverse a variable number of edges before you
find the vertex you are looking for — that us, the number of joins is not fixed in advance.

TriplesStores and SPARQL

In a triple-store, all information is stored in the form of very simple three-part statements:

The of a triple is equivalent to a in a graph. The
object is one of two things:

1. , such as string or a number. In that case, the predicate
and object of the triple are equivalent to the key and value of a property on the subject
vertex.

2. . In that case, the predicate is an edge in the graph, the

subject is the tail vertex, and the object is the head vertex.

-- Subset of data represented as Turtle triplets

_:idaho :within _:usa -- the predicate represents an edge, the object
is a vertex
_:usa :name “United States” -- the predicate is a property, the

object is a string literal

The sematic web

. The semantic
web idea is: websites already publish information as texts and pictures for humans to read, so
why don’t they also publish information as machine readable data for computers to read? The
Resource Description framework (RDF) is a mechanism for different websites to publish data in
a consistent format, allowing data from different websites to automatically combined into a
web of data — a kind of internet-wide “database of everything”.

The RDF (Resource Description Model) data Model

RDF has few peculiarities due to the fact that it is'designed for internet-wide data. The subject,
predicate, and object of a triple are often URIs. For example, <http://my-
company.com/namespace#within>. The reason behind this design isthat you should be able to
combine your data with someone else’s data, and if they attach adifferent meaning to the
word within, you won’t get a conflict because their predicates are actually
<http://other.org/foo#twithin>.

The SPARQL query language

SPARQL is a query language for triple-stotes using the’'RDF data model. SPARQL'is a nice query
language — even if the semantic web never happens, it can be a powerful tool for applications
to use internally.

SELECT ?personName WHERE {
?person :name ?personName.
?person :bornIn / :within* / name “United States”.
?person :livesIn / :within* / name “Europe”.

Graph Databases compared to the network model

CODASYL Graph Database
- It has a schema that specifies which - It does not have a schema: any vertex
record type can be nested within can have an edge to any other vertex
which other record type -> This gives much greater flexibility
to adapt to changing requirements
- Toreach a particular record, you - Toreach a particular record, you can
need to traverse one of the access refer directly to any vertex by its
paths to it unique ID, or you can use an index to
find vertices with a particular value
- Children of a record are an ordered - Vertices and edges are not ordered

set. Database must maintain that

order and applications must worry
about that order while inserting new

records
- All queries are imperative, difficult to - It supports imperative code but also
write and easily broken by changes high-level declarative languages

in the schema

The Foundation: Datalog

Datalog is a declarative logic programming language that syntactically is a subset of Prolog. It
is often used as a query language for deductive databases. Datalog’s data model is similar to
the triple-store model, generalized a bit. Instead of writing a triple as (subject, predicate,
object), we write it as predicate (subject, object).

Name(namerica, ‘North America’).
Type(namerica, continent).

Within_recursive(Location, Name) :- name(Location, Name). /* Rule 1 */
Migrated(Name, BornIn, LivingIn) :- name(Person, Name), /* Rule 2 */

Born in(Person, BornLoc),
Within_recursive(BornLoc, BornIn).

?- migrated(Name, ‘United States’, ‘Europe’) /* Rule 3 */

The Datalog approach requires a different kind of thinking to the other query languages. It is a
very powerful approach, because rules can be and reused in different queries. It’s less
convenient for simple one-off queries, but it can cope better.if your data is complex.

